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Nonlinear dynamics and dynamical 
chaos in classical systems is a 
familiar everyday occurrence. 
However, attempts to find chaos 

in the quantum Schrödinger equation for 
the wave function, or, more generally, the 
quantum Liouville equation for the density 
matrix, have all failed. This is due not only 
to the linearity of the equations but also due 
to the Hilbert space structure of quantum 
mechanics which, via the uncertainty 
principle, does not allow the formation of 
fine-scale structure in phase space, thus 
precluding chaos in the sense of classical 
trajectories. Indeed, some people have even 
wondered if this behavior constitutes a 
fundamental failure of quantum mechanics  
in describing the real world.

A deeper look at this issue reveals that the 
question needs to be posed more carefully. 
Quantum mechanics is intrinsically 
probabilistic, thus the correct formal 
analogy to the quantum Liouville equation 
is the corresponding classical Liouville 
equation describing the evolution of the 
classical phase space distribution function. 
If, for isolated systems, we decide that 
expectation values—averages over the 

classical or quantum distributions—are the 
only relevant dynamical variables, then it 
is easy to show that there is no chaos in the 
quantum and classical Liouville equations for 
smooth distributions! This directly follows 
from unitarity in the quantum case and 
symplectic evolution in the classical case [1]. 
The situation, both classically and quantum 
mechanically is thus very much the same.

However, the evolution of an expectation 
value of an isolated system does not represent 
the evolution of an observed system, as 
in a real experiment. This is equally true 
classically or quantum mechanically. The 
correct description of realistic systems 
must take into account the interaction with 
the experimental probe and include the 
changes in the evolution of the distribution 
function as a consequence of the information 
extracted during the observation process. 
This formalism has been developed over 
the last 30 years, primarily by quantum 
opticians and mathematicians and is now 
being applied in quantum control theory and 
in wider contexts, such as measurements on 
condensed matter systems.

The basic dynamical equation for observed 
systems is termed the conditional Liouville 
equation. This equation is nonlinear due 
to the term that incorporates the change in 
the estimation of the system state given the 
observational record. In the quantum case, 
there is also a diffusive term that describes 
the unavoidable quantum backaction noise 
of the measurement. Previously, we had 
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The position distribution 
for an observed system 
(green) compared to the 
position distribution for 
the unobserved system 
(red) from a high-
resolution numerical 
investigation. Note the 
sharp localization of the 
observed distribution.
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established the conditions under which 
the quantum evolution was consistent 
with classical trajectory results, and hence, 
consistent with classical chaos [2]. Basically 
this happens when the observation localizes 
the state sufficiently so that it can be thought 
of as “sharp” in a trajectory sense, yet the 
backaction noise is small enough that the 
trajectory is not noisy.

But what happens when the quantum 
evolution is not localized and far from the 
classical limit? Can there still be chaos in 
such (observed) quantum systems? We have 
recently succeeded in defining and computing 
Lyapunov exponents (the rigorous quantifiers 
of chaos) for such systems. We have been able 
to show that intrinsic quantum chaos—in 
the sense just outlined—exists, not only for 
weakly measured quantum systems which 
satisfy the classical limit as the measurement 
strength is increased (hence the state is 
more localized), but also when the Planck 
constant is large enough on the scale of the 
accessible phase space that no classical limit 
can exist [1]. The new results have been made 
possible largely due to parallel supercomputer 
calculations carried out under the Los 
Alamos National Laboratory Institutional 
Computing Initiative.

Interestingly enough, there is a classical 
analog to the quantum behavior just 
described. If a classical system is driven 

by environmental noise, and the noise is 
sufficiently strong, the classical state resulting 
from the solution of the conditioned Liouville 
equation is also not localized in phase space 
and can have a Lyapunov exponent which 
is nonzero but different from the classical 
trajectory Lyapunov exponent. Since the 
nonlocalized distributions generated by 
nonlinear Hamiltonians can be quite different 
depending on whether classical or quantum 
calculations are performed [3], the Lyapunov 
exponents in the two cases are also expected 
to be different. This issue is now under 
investigation.

Finally, the experimental state of the art is 
advancing at a rapid pace. It is expected that 
in a few years experiments in cavity quantum 
electrodynamics (QED) and nanomechanics 
will be able to provide controlled testing 
grounds for the “real” quantum chaos.
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Figure 2— 
The quantum Lyapunov 
exponent for the Duffing 
oscillator at a fixed 
value of the Planck 
constant, but with 
varying strength of 
measurement, k. As k 
increases, the exponent 
converges to the classical 
value. At small values 
of k, the evolution is 
not localized as sharply 
as in Fig. 1, yet the 
Lyapunov exponent  
is finite.
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